ADOT Air Quality Management Guidebook

Nogales PM $_{2.5}$ / PM $_{10}$ Nonattainment Area Case Study

Goal: Demonstrate Recommended Approaches

Outline

Nogales PM_{2.5}/PM₁₀ Nonattainment Area Case Study

- Introduction & Air Quality Background
- **▶ Interagency Consultation Procedures**
- ▶ Transportation Control Measure Analysis
- Conformity Analysis Procedures
- Process Demonstration

Air Quality Overview

Nogales PM_{2.5}/PM₁₀ Nonattainment Area Case Study

		j
County	Current SIP Status ¹	Notes (as of February 1, 2013)
Nogales, AZ PM2	s Nonattainment Area	
Santa Cruz (P)	Attainment Finding Effective 2/6/2013 78 FR 887	Area remains nonattainment until a Maintenance Plan is submitted and approved. Regional conformity still applies.
Nogales, AZ PM ₁	Moderate Nonattainment Area	
Santa Cruz (P)	2012 SIP Approval Effective 10/25/2012 77 FR 58962	EPA approved the plan element demonstrating that the Nogales nonattainment area is attaining the NAAQS for PM10, but for international emissions sources in Nogales, Mexico.

TABLE 1—2011 NOGALES NA PM₁₀ MOTOR VEHICLE EMISSIONS BUDGET [tons]

Source category	PM ₁₀
Unpaved Road Dust	864.9 267.0 121.4
Vehicle Exhaust	21.0
Total	1,274.3

Interagency Consultation Procedures

Nogales PM_{2.5}/PM₁₀ Nonattainment Area Case Study

- Background on ICG Requirements
- Example Roles / Responsibilities
- Example Items Determined through ICG
 - Analysis Year(s)
 - Latest Planning Assumptions
 - Models to be Used

Conformity Analysis Approach

Nogales PM_{2.5}/PM₁₀ Nonattainment Area Case Study

- Overview
- Analysis Tools and Software
- Process Development Details
- Process Structure and Operation

(Review of Setups & Runs on Baker Network Computer)

- Sample 2008 Emission Results
- Possible Process Modifications

Conformity Analysis Approach Overview

- Sample emission calculation framework using:
 - ✓ EPA's MOVES2010 Emission Model
 - Arizona Statewide Travel Model Data
 - ✓ Available ADOT sample files
 - ✓ AP-42
- Area:
 - ✓ Santa Cruz County
 - ✓ Nogales PM10 Nonattainment Area
- 2008 Analysis Year (July Weekday)

Focus Goals of Case Study Analysis

Integrate Pre/Post Processing Methodologies

- Use existing software
- Recalculate model speeds expand to 24 hours
- Automatically prepare MOVES traffic input files
- Revise vehicle mapping schemes

Batch Processing

- Integrate batching methods using available software
- Create menu-driven process
- Run MOVES in batch mode based on user inputs to menu screen

File Management

- Allow for automated file naming through process
- Create organized directory structure to store/manage data
- Focus on structure for maintaining data for multiple counties/areas

Selection of Tools and Software

- Based on those discussed in WP#3
- PPSUITE / CENTRAL
 - ✓ Off-the shelf software requiring setup
 - Can represent methods/procedures to incorporate in other customized software
 - ✓ Designed to link and operate with alternative traffic data sources (model and non-model data)
 - ✓ Used for past regional SIP/Conformity activities in other states (PA, NJ, MD, LA, WV, NYC, VA)

Role of PPSUITE

How to Setup PPSUITE

- Run using input ASCII driver files
- Defined keywords
- Many different functions with flexible framework
- Most develop key input files

```
!=============== Define Facility Groups ==========
DEFINE FACTGROUP = FACTYPE
                                 ! [FCLASS | FACTYPE {Default}]
                                 ! Freeway Rural
 2 = 2
                                 ! Major Arterial Rural
   = 6
                                 ! Minor Arterial Rural
                                 ! Major Collector Rural
   = 8
                                 ! Minor Collector Rural
 9 = 9
                                 ! Centroid Connector/Local Rural
11 = 11
                                 ! Freeway Urban
14 = 14
                                 ! Major Arterial Urban
16 = 16
                                 ! Minor Arterial Urban
17 = 17
                                 ! Centroid Connector/Local Urban
19 = 19
                                 ! Local Arterial
20 = 20
                                 ! Ramp/Metered Ramp Rural
21 = 21
                                 ! Ramp/Metered Ramp Urban
END
!================= Define Time Groups =================
DEFINE TIMEGROUP
            7 8 9
  TIMEAM
            10 11 12 13 14 15
  TIMEMID
  TIMEPM
            16 17 18
  TIMENITE 19 20 21 22 23 24 1 2 3 4 5 6
END
!===== User Definition Of Vehicle Types For Traffic Analysis =======
DEFINE VEHTYPES
                       ! Minimum of 2 - Max of 28
 1 = AUTO
                      ! Passenger Car, MC, and Light Trucks
 2 = SUT
             TRUCK
                       ! Single Unit Trucks and Buses
             TRUCK
                       ! Combination Trucks
  3 = MUT
END
```

Role of CENTRAL

Provides user interface screens

Combine multiple steps into one process

File management and naming

Error tracking

Combine model runs / air quality

User Dialog
PPAQ EMISSIONS ESTIMATE HBGMODEL
Selections effect MOVES run and folder naming: {EmissionCalculation_Month_DayType}
1 Select emission type (pick one only) PM2.5 Cone CO GHG Energy
2 Select month(s) to run emission analysis:
☐ January ☐ February ☐ March ☐ April ☐ May ☐ June ☐ July ☐ August ☐ September ☐ October ☐ November ☐ December (OR) ☐ Winter ☐ Summer
3 Select time aggregation C Annual C Daily
* Ozone required on weekdays * Energy is a good testing agent for all combinations
(1) Run ID (2) VMT Adj (3) PPSUITE (4) MOVES Setting (5) Annual (6) Runtime ancel Proceed

How to Setup Central

- Run using input ASCII driver files
- Like a programming language
- Specify macro variables
- Defined keywords

```
SCREEN 6 if %MOVES=on
      name = TrafficInputs
      %NetworkAB
                    tvpe=file
      %NetworkBA
                    type=file
      %vehmix
                    type=file
      %hourpatt
                    type=file
      %hpmsadj
                    type=file
                           ARIZONA MOVES-PPSUITE PROCESS
                 Specify Traffic Data Inputs for Emission Process
  Network Database - AB Links:
                                                                                  |%NetworkAB
  Network Database - BA Links:
                                                                                   1%NetworkBA
  Vehicle Mix File:
                                                                                  |%vehmix
  Hourly Pattern File:
                                                                                   |%hourpatt
  HPMS Adj File:
                                                                                   |%hpmsadj
     VMT Reconciliation To HPMS Reported Totals. Applied as POSTVMT Factors.
                            -- Leave Blank if Not Used --
>BLOCK RUNCTY
           ----- Santa Cruz COUNTY ------
>LINEIF %runSANT = ON THEN >GLOBAL %cty = "Santa Cruz County" %cty4 = SANT
>LINEIF %runSANT = ON THEN >GLOBAL SET %cty4fips = 4023
* Make and Set Directories Under Out Directories
>LINEIF %runSANT = ON THEN >GLOBAL SET %dirout =
%$$workdir.Out\%RunDesc.\%OutDirNameIni.%cty4fips. %calyear. %monthID. %dayID. %Mpolicy.\
>LINEIF %runSANT = ON THEN >DOS mkdir %dirout.MVS
>LINEIF %runSANT = ON THEN >DOS mkdir %dirout.CDM
```

Case Study Batch Process Flowchart

Process Directory Structure

Output Directory Naming

- → Roadway Data Inputs
- Statewide travel model data input to PPSUITE for processing
- Key tasks:
 - ✓ Reformatting (could be accomplished in ACCESS, EXCEL or other database software.
 - ✓ Additional of ROADTYPE variable for MOVES
 - ✓ Separation into 2 input databases (AB / BA direction)

Arizona Statewide Model Data Used

Field Type	Use
Length	To compute VMT for each segment
Facility Type	Lookup of other link attributes (e.g. capacities, signal
Area Type	characteristics, congested speed curve coefficients)
Speed Limit	Free-flow speed
Lanes	To determine total capacity of link
Daily Volume	Daily volume to distributed to each hour of the day
AM Peak Period Volume	Adjust hourly pattern to ensure match with model peak
PM Peak Period Volume	volumes
Daily Truck Volume	Adjust vehicle mix pattern to match truck volume on each link
Roadtype	Used to aggregate data for input to MOVES

→ 2008 HPMS Adjustments

> Reconcile model results to reported 2008 HPMS totals

FC	FC Description	2008 HPMS AADT	2008 Model Raw VMT
1	Rural Freeway	283,487	376,715
2	Rural Major Arterial	0	642
6	Rural Minor arterial	0	0
7	Rural Major Collector	59,845	225,195
8	Rural Minor Collector	38,367	291
9	Rural Centroid Connector/Local	625,767	91,926
11	Urban Freeway	312,888	171,909
14	Urban Major Arterial	175,201	47,042
16	Urban Minor arterial	154,021	42,224
17	Urban Collector	43,630	120,772
19	Urban Centroid Connector/Local	122,205	29,234
20	Rural Ramp/Metered Ramp		3,347
21	Urban Ramp/Metered Ramp		2,053
		1,815,411	1,111,350

FC Grouping	2008 HPMS AADT	2008 Model Raw VMT	2008 HPMS Adjustment	
1, 11, 12 (20, 21)	596,375	554,024	1.0764	\
2, 6, 14, 16	329,222	89,908	3.6618	
7, 8, 9, 17, 19	889,814	467,418	1.9037	
Sum Total	1.815.411	1.111.350		

→ Vehicle Type Mix

VMT Data Source		MOVES Source Type Mapping	Calculate Vehile Mix Distribution
		Auto by MOVES Source Type	Auto VMT Mix
		11_Motorcycle	Based on MOVES Default VMT Mix (AZ
	Auto	21_Passenger Car	Statewide 2008 Total) Normalized by Auto
		31_Passenger Truck	Grouping
		32_Light Commercial Truck ←	[Does not vary by county & road type]
		SUT by MOVES Source Type	SUT VMT Mix
		42_Transit Bus	
	SUT	43_School Bus	Based on MOVES Default VMT Mix (AZ
AZ Statewide Model		41_Intercity Bus	Statewide 2008 Total) Normalized by SUT
iviodei		51_Refuse Truck	Grouping
		52_Single Unit Short-haul Truck	[Do not vary by county & road type]
		53_Single Unit Long-haul Truck	
		54_Motor Home	
		MUT by MOVES Source Type	MUT VMT Mix
		61_Combination Short-haul Truck	Based on MOVES Default VMT Mix (AZ
	MUT	or_combination short had mack	Statewide 2008 Total) Normalized by MUT
		62_Combination Long-haul Truck	Grouping
		52_combination Long hadrindek	[Does not vary by county & road type]

→ Hourly Pattern Data / Hour VMT Fractions

Hourly Pattern
Data from ADOT
Spreadsheets

(in MOBILE6 format)

Prepare Hourly
Pattern Input File
in PPSUITE-Ready
Format

(By FC & 24-Hour)

Created by PPSUITE

MOVES Hour VMT Fractions

→ Fuel Parameters

* Note: CNG fuel is included in MOVES RunSpec in addition to gasoline and diesel fuels per EPA Technical Guidance for SIP and Conformity

→ Vehicle Population Data

Vehicle Population
Data from ADOT

Prepare Population Inputs in PPSUITE-Ready Format

Created by PPSUITE

MOVES Source Type Population

- Santa Cruz County: Use the population data from ADOT directly
- Nogales Area: Apply a factor* to the population data

(*Factor = VMT in Nogales area/ VMT in Santa Cruz County)

→ Other Inputs Used Directly From ADOT Sample Files for Santa Cruz County

Day VMT Fractions Month VMT Fractions

Temps/Humidity

Process Demonstration

Examine process setups Illustrative test run

Review file management and directory structure

Sample Summary of Speed Results

Coad Type	Santa Cruz (MPH)	Nogales (MPH)
Rural Restricted	73.7	N/A
Rural Unrestricted	32.3	51.7
Urban Restricted	67.7	N/A
Urban Unrestricted	35.1	34.0
County/Area Average	40.8	36.0

Sample Run Results (2008 July Weekday)

Solvescription	Area of Analysis	VMT	PM2.5 <u>Total</u> (Tons/Day)	PM10 <u>Total</u> (Tons/Day)	PM10 Elemental Carbon (Tons/Day)
PPSUITE Process Run 1 Apply County HPMS Factors	Nogales	698,472	0.039	0.055	0.017
PPSUITE Process Run 2 Match County HPMS VMT	Santa Cruz	2,106,750	0183	0.226	0.112

Process Demonstration

- AP-42 Spreadsheet Calculation Tool
- ► ADEQ 2012 SIP Methodologies
- Local VMT from MOVES runs

Sample Paved F	Road Baseline En	nissions		<u>~</u>	
Default Values Obt	ined from the ADEC		Implementation Dia		Janettainmant Avan
Particle Size	Road Surface Silt	Average Weight	Number of Wet	Jer of Days	PM ₁₀ / PM _{2.5} Ratio
Multiplier (k)	Loading (sL) (g/m ²)	of Vehicles (W)	Days (P)	in Averaging	PIVI ₁₀ / PIVI _{2.5} Rauo
0.0022	0.105	3	45	365	0.25

Process Demonstration

- Background on TCMs
- Sample Quantification of TCM in the SIP
 - Pave or Chemically Stabilize Unpaved Roads
- Spreadsheet Calculation Tool
 - 6 Lane Miles Paved
 - ADT = 100

Sample Nogales PM₁₀ Results (Annual)

6	ampl	Unpaved Road Dust	Road Construction Dust	Paved Road Dust	On-Road ¹
	MVEBs	864.9	267.0	121.4	21.0
	Sample Analysis	619.65	267.0 ²	92.62	17.35
	Difference	245.25	0.0	28.78	3.65
	Pass / Fail	Pass	Pass	Pass	Pass

- 1. Includes on-road gasoline, and diesel vehicle emissions, including brake, tire wear, and vehicle exhaust
- 2. SIP assumes no change: "There have been no substantial road construction projects in the Nogales NA in the last five years and no projects are planned for the next five years."
- 3. Based on July weekday, multiplied by 315.38

Possible Process Modifications

- Alternatives for Determining Nogales VMT
 - Methods to account for missing local VMT
 - ✓ Available Local Planning Assumptions
- Methods for Vehicle Mapping
 - ✓ What MOVES types relate to model truck categories
- Methods for estimating Nogales Vehicle Population
- Adj/Calibration of Input Capacity Lookup Tables
- Integration of seasonal factors / hourly patterns
- Customization of User Menu System
- Customized tool(s) for off-network analyses (AP-42, AQONE)